13,972 research outputs found

    Low work function of the (1000) Ca2N surface

    Get PDF
    Polymer diodes require cathodes that do not corrode the polymer but do have low work function to minimize the electron injection barrier. First-principles calculations demonstrate that the work function of the (1000) surface of the compound Ca2N is half an eV lower than that of the elemental metal Ca (2.35 vs. 2.87 eV). Moreover its reactivity is expected to be smaller. This makes Ca2N an interesting candidate to replace calcium as cathode material for polymer light emitting diode devices.Comment: 3 pages, 4 figures, accepted by J. Appl. Phy

    Kinetic cross coupling between non-conserved and conserved fields in phase field models

    Get PDF
    We present a phase field model for isothermal transformations of two component alloys that includes Onsager kinetic cross coupling between the non-conserved phase field and the conserved concentration field. We also provide the reduction of the phase field model to the corresponding macroscopic description of the free boundary problem. The reduction is given in a general form. Additionally we use an explicit example of a phase field model and check that the reduced macroscopic description, in the range of its applicability, is in excellent agreement with direct phase field simulations. The relevance of the newly introduced terms to solute trapping is also discussed

    Metal-catalyst-free growth of silica nanowires and carbon nanotubes using Ge nanostructures

    No full text
    The use of Ge nanostructures is investigated for the metal-catalyst-free growth of silica nanowires and carbon nanotubes (CNTs). Silica nanowires with diameters of 10-50 nm and lengths of ? 1 ?m were grown from SiGe islands, Ge dots, and Ge nanoparticles. High-resolution transmission electron microscopy (HRTEM) and energy dispersive X-ray spectroscopy (EDS) reveal that the nanowires grow from oxide nanoparticles on the sample surface. We propose that the growth mechanism is thermal diffusion of oxide through the GeO2 nanostructures. CNTs with diameters 0.6-2.5 nm and lengths of less than a few ?m were similarly grown by chemical vapor deposition from different types of Ge nanostructures. Raman measurements show the presence of radial breathing mode peaks and the absence of the disorder induced D-band, indicating single walled CNTs with a low defect density. HRTEM images reveal that the CNTs also grow from oxide nanoparticles, comprising a mixture of GeO2 and SiO2

    Growth of Carbon Nanotubes on HfO2 towards Highly Sensitive Nano-Sensors

    No full text
    Carbon nanotube (CNT) growth on HfO2 is reported for the first time. The process uses a combination of Ge and Fe nanoparticles and achieves an increase in CNT density from 0.15 to 6.2 mm length/mm2 compared with Fe nanoparticles alone. The synthesized CNTs are assessed by the fabrication of back-gate CNT field-effect transistors with Al source/drain contacts for nano-sensor applications. The devices exhibit excellent p-type behavior with an Ion=Ioff ratio of 105 and a steep sub-threshold slope of 130 mV/dec

    The relation between cardiac 123I-mIBG scintigraphy and functional response 1 year after CRT implantation

    Get PDF
    Cardiac resynchronization therapy (CRT) is a disease-modifying therapy in patients with chronic heart failure (CHF). Current guidelines ascribe CRT eligibility on three parameters only: left ventricular ejection fraction (LVEF), QRS duration, and New York Heart Association (NYHA) functional class. However, one-third of CHF patients does not benefit from CRT. This study evaluated whether 123I-meta-iodobenzylguanidine (123I-mIBG) assessed cardiac sympathetic activity could optimize CRT patient selection

    The transition to irreversibility in sheared suspensions: An analysis based on a mesoscopic entropy production

    Full text link
    We study the shear-induced diffusion effect and the transition to irreversibility in suspensions under oscillatory shear flow by performing an analysis of the entropy production associated to the motion of the particles. We show that the Onsager coupling between different contributions to the entropy production is responsible for the scaling of the mean square displacement on particle diameter and applied strain. We also show that the shear-induced effective diffusion coefficient depends on the volume fraction and use Lattice-Boltzmann simulations to characterize the effect through the power spectrum of particle positions for different Reynolds numbers and volume fractions. Our study gives a thermodynamic explanation of the the transition to irreversibility through a pertinent analysis of the second law of thermodynamics.Comment: 17 pages, 3 figures, paper submitted tp phys rev

    Neutron Diffusion and Nucleosynthesis in an Inhomogeneous Big Bang Model

    Full text link
    This article presents an original code for Big Bang Nucleosynthesis in a baryon inhomogeneous model of the universe. In this code neutron diffusion between high and low baryon density regions is calculated simultaneously with the nuclear reactions and weak decays that compose the nucleosynthesis process. The size of the model determines the time when neutron diffusion becomes significant. This article describes in detail how the time of neutron diffusion relative to the time of nucleosynthesis affects the final abundances of He4, deuterium and Li7. These results will be compared with the most recent observational constraints of He4, deuterium and Li7. This inhomogeneous model has He4 and deuterium constraints in concordance for baryon to photon ratio eta = (4.3 - 12.3) X 10^{-10} Li7 constraints are brought into concordance with the other isotope constraints by including a depletion factor as high as 5.9. These ranges for the baryon to photon ratio and for the depletion factor are larger than the ranges from a Standard Big Bang Nucleosynthesis model.Comment: 7/15, added reference

    Partial-measurement back-action and non-classical weak values in a superconducting circuit

    Get PDF
    We realize indirect partial measurement of a transmon qubit in circuit quantum electrodynamics by interaction with an ancilla qubit and projective ancilla measurement with a dedicated readout resonator. Accurate control of the interaction and ancilla measurement basis allows tailoring the measurement strength and operator. The tradeoff between measurement strength and qubit back-action is characterized through the distortion of a qubit Rabi oscillation imposed by ancilla measurement in different bases. Combining partial and projective qubit measurements, we provide the solid-state demonstration of the correspondence between a non-classical weak value and the violation of a Leggett-Garg inequality.Comment: 5 pages, 4 figures, and Supplementary Information (8 figures

    Shear flow, viscous heating, and entropy balance from dynamical systems

    Full text link
    A consistent description of a shear flow, the accompanied viscous heating, and the associated entropy balance is given in the framework of a deterministic dynamical system, where a multibaker dynamics drives two fields: the velocity and the temperature distributions. In an appropriate macroscopic limit their transport equations go over into the Navier-Stokes and the heat conduction equation of viscous flows. The inclusion of an artificial heat sink can stabilize steady states with constant temperatures. It mimics a thermostating algorithm used in non-equilibrium molecular-dynamics simulations.Comment: LaTeX 2e (epl.cls + sty-files for Europhys Lett included); 7 pages + 1 eps-figur
    • …
    corecore